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Abstract

We introduce- in this paper- the notion of edge Z-algebra and investigate its properties. Also we introduce
the notion of edge Z-subalgebra, and show the relation between these two notions. And we introduce the
notion of Z-closed set, and re-introduce the notion of Z-subalgebra, and show the relation between these two
notions. Then we prove that the union of Z-closed set with Z-subalgebra is Z-subalgebra in edge Z-algebra.
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An Edge Z-Algebra

1. Introduction

Algebraic structure is an important branch of mathematics, it has a lot of applications in many fields
as computer science, information science, and coding theory, among others. The concept of Bck-
algebra had been introduced by Y. Imai and K. Iseki in 1966, after that both of them introduced the
class (BCl-algebra) as a generalization of Bck-algebra, in 1980 [1]. In 1999, the concept of d-
algebras had been introduced by J. Neggers and H.S. Kim [2]. Since then, several interesting
generalizations of BCK\BCl-algebras have been presented and researched ([5], [8]).

M. Chandramouleeswaran, P. Muralikrishna, K. Sujatha, and S. Sabarinathan construct the concept
of Z-algebra. They gave us the proof: that Z-algebra is not a generalization of BCK/BCl-algebras,
that Z-algebra is a different concept from other abstract algebras such BE-algebras, BF-algebras, d-
algebras and so many else- 2017 [4]. Since that time, several papers have been published examining
the Z-algebra ([9], [10], [11]). Our paper is a follow-up to these works.

2. Preliminares:
we review the concepts of BCK-algebra and d-algebra. we mention the definition of Z-algebra and
some properties that are needed for our work in this part.
Definition 1 (see [2]). let X be a nonempty set with constant 0 and let * be a binary operation since
the following axioms hold:

() x*xx=0

(I 0xx=0

() xxy=0& y*xx=0=>x=y Vx,yeX

Then (X,*,0) is called a d-algebra.
e |f (X,*,0) is a d-algebra with additional axioms hold:
(V) ((x*xy)* (x*2))*(z*y) =0
W) (x*x(x*xy))*xy=0Vx,y,z€X
Then (X,*,0) is called a Bck-algebra.

Definition 2. (see [4]). let X be a nonempty set with constant 0 and let * be a binary operation since
the following axioms hold:
(Zy) xx0=0
(Z,) O0xx=x
(Z3) x*x=x
(Zy) x*y=y*xwhenx #0&y#0Vx,yeX
Then (X,*,0) is called a Z-algebra.

Example 1. (see [4]). Let we have aset X = {0,1,2,3}, a constant 0 and a binary operation * with
the Cayley’s table:

* 10 [1 ]2 3

0 ]0[1]2]3

1 /0 |1 |0 |1

2 [0 |0 [2 [2

310 [1 ]2 (3
(1)

Then, (X,*,0) is a Z-algebra.

Definition 3. (see [2]). If (X,*,0) isa d- algebraand x € X. Definethesetx * X = {x *a; a €
X} If +X = {0,x} Vx € X, then X is said to be edge.
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Definition 4. (see [3]) Let X be a d-algebra and | a nonempty subset of X. if x * y € I,Vx,y € I,
then | is called a d-subalgebra of X.

It's clear that the constant "0" belongs to every d-subalgebra
0=x=*x€l

. Because: for any x in I, we have

Definition 5. (see [4]) Let X be a Z-algebra and | a nonempty subset of X. if x * y € I,Vx,y €
1., then I 'is called a Z-subalgebra of X.

Example 2. (see [4]) In the example 1. Two Z-Subalgebras of X were given: A = {1,3} c X and
B = {2,3} c X. and another subset C = {1,2,3} < X which is not a Z-Subalgebra of X was
given.

3. Main Results:
Definition 6. let (X,*,0) be a Z- algebraand x € X. Define:
X*x={ax*xx;a€X} (2

X is said to be edge if for any x in X,
X *x ={0,x} 3)

Example 3. Let we have a set X = {0,1,2,3}, a constant 0 and a binary operation * with the
Cayley’s table:

* 1o [1 ]2 3

010 [1]2]3

1o [1 [0 o

2 10 [0 |2 ]o0

3 1o [o Jo [3
(4)

Then, (X,*,0) is a Z-algebra. We can easily see that (X,*,0) is an edge Z-algebra, since (3) holds
forall x in X.

Example 4. Let we have a set X = {0,1,2,3,4}, a constant O and a binary operation * with the
Cayley’s table:

* |0 |1 ]2 |3 |4
0 |0 |1 |2 |3 |4
1 /0 |1 |2 |0 |4
2 |0 |2 |2 |10
3 [0 |0 |1 |3 |1
4 10 |4 |0 |1 |4
()
Then, (X,*,0) is a Z-algebra. We can easily see that
X *1={01} (6)

Because
2x1=2¢{0,1} (7)
then (X, ,0) is non-edge Z-algebra.

Theorem 1. let (X,*, 0) be an edge Z- algebra, then for all x and y in X, we have:
yxx={x ify=xo0or y=00  otherwise (8)

Proof: let x,y € X. Then, then we notice definition 2 and find:
1. if y = x, we have
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YEX=X*X=X 9)
2. If y =0, we have

yxx=0xx=x (10)
3. Otherwise, if x # yandy # 0.
If x =0, we have

yxx=y*x0=0 (1)
If x # 0andwe have y # 0, X is an edge Z- algebra, we have

x xy = {0,y} &y*x = {0,x} (12)

If y * x = 0, complete the proof. If y * x = x, then
° If x * y=0,then 0 = x, a contradiction.
° If x x y =1y, theny = x, acontradiction too.

<& We will call that
X*=X—-{0}. (13)

Proposition 1. let (X, *,0) is an edge Z- algebra, then:
lx=y=x*xy=y*xx=xVx,y€X
2.x#Fy=xxy=yxx=0Vx,y € X* (14)

Proof: we notice definition 2 and see,
lx=y=Sx*xy=y*sx=x*xx=X

2. we notice (12),

o Ifx x y=0andy * x =0,thenx *y = y *x x = 0, complete the proof.
e Ifx x y=yandy * x = 0, then y = 0, a contradiction.

e Ifx *x y=0andy * x = x, then 0 = x, a contradiction.

e Ifx x y=yandy * x = x, then y = x, a contradiction too.

Proposition 2. let (X,*,0) be a Z- algebra, then X is an edge Z- algebra if, and only if,
x*X*={0,x} vxeX* (15
Proof:
First: Assume that X is an edge.
letx*xyex*X"; x,y e X"
1. Sincex #0andy # 0,thenx = y =y * x (by (Z,)).
Now we have:
x*xy=y*x€X " *x S X*x={0,x}
> x*y €{0,x}Vx *xy € x * X"
= x * X" < {0,x} (16)

2. ifx # y, we notice (14), then we have
x*xy€ x x X*
=0€ x *x X" 17)
if x = y, we notice (Z3), then
x*xy€ x x X*
=x€ x x X" (18)

By (17) and (18) we see {0,x} S x * X~ (19)

By (16) and (19) we find that x * X* = {0, x}Vx € X*.
Second: Assume (15) holds, and we notice definition 2.
Letx,y €x
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. Letyxx € X x x;
Ifx#0andy #0,thenyx x = x * y € x * X" = {0, x} by (15).
Ifx=0,theny* x = y » 0=0 € {0,x}.
Ify=0,theny* x = 0 * x =x € {0,x}.

e o6 o

From these three cases we see that
X*x <{0,x} (20).

2.1f x =0then 0=y*x 0=y* x € X*x (by (Z;)). And we have x = x * x € X xx (by
(Z3)). Then
{0,x} S X *x (22).
By (20) and (21) we find (3), then X is an edge.

Proposition 3. let (X,*,0) be a Z- algebra. X is an edge Z- algebra If, and only if,
x*y=0Vx,y(x #y) €X" (22).
holds.
Proof: if X is an edge, and we notice (14), then (22) holds.
If (22) holds, then:
Letyxx €X*xx;x,y €X
o x#0andy # 0,theny *x x =x*xy =0 € {0,x} by (22).
o x=0,theny* x =y *x 0=0 € {0,x} (by (Z,)).
o y=0,theny* x = 0 * x =x € {0,x} (by (Z,)).
o x = ytheny* x = x* x =x € {0,x} (by (Z3)).

Now we find (20).

Andifx =0,then0 =y *0 =y xx € X * x (by (Z1)). And we have x = x * x € X * x., then we
get (21).

By (20) and (21) we find (3), then X is an edge.

Theorem 2. let (X,*,0) be an edge Z- algebra, then for all x and y in X, we have
(x*y)xx=Q*x)*x=x (23).
Proof: let x, y € X. We notice definition 2, then:
x=00ry=0=>(x*y)*x=x&y*x)*x=x
x#F0&y#0=>(x x y)*x=(y*x) *xx
Since X is an edge Z- algebra, we have y *x € X *xx = {0,x}.
yxx=00ry*xx=x=(x * y)*sx=(y*x)*x =X

Theorem 3. let (X,*,0) be a Z- algebra. If
(x*y)*x =xVx,yeEX S x xy=0Vx,y(x #y) €EX* (24).
Proof: letx,y (x # y) € X*. Since x£0 & y#0, then x * y = y * x (by (Z,)). Now assume that there
are x,y (x # y) € X*such that x x y # 0. Therefore,
eitherx*y=x,x*y=y orx*xy=2zZ€X",Z +#x,Z # Y.
Now
xxy=x=>y *x)xy=(X *xy)*y =x*xy=x#y
a contradiction.
X¥y=y=>(X *y)*xXx =y* x=x*xy=y#X
a contradiction.
X*xy=zZ=Xx=(X *Y)*¥X =Z* X =X*Z

= (Z *X)*Z =X*Z=XF+2Z
a contradiction too.
Thenx * y=0Vx,y (x #y) € X".
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Now, letx,y € X:

. x=0,then(x*y)*x=0x*y)*0=0=x

. y=0,then (x*y)*x=(x*0)*xx =x

. x=y,then(x*y)*x=(x*x)*x=x

. x#0,y#0andx #y,then (x xy) *x =0*x = x, (by x * y = 0).
Then (x *y)*x =xVx,y €X

« As a result, we can conclude the following theorem:

Theorem 4. let (X,*,0) be a Z- algebra, then
Xisanedge ® x * X" ={0,x} Vx € X~
ex*xy=0vVx,y(x#y)€X"
S x*xy)xx =xVx,y€eX
Proof: it is clear from proposition 2, remark 1, theorem 2 and theorem 3.
e Inthe definition " Z-subalgebra " that is given by definition 5, we notice that the constant "0" —
IS not necessary- belongs to every Z-subalgebra. Because: for any x # 0 in X, we have x * x =
x € I (by (Z3)). Hence I = {x}is a Z-subalgebra. We see that (Z;) and (Z,) don’t hold since0 €
1. that makes a contradiction with concept of substructure, (see [6],[7]).

So we suggest to rename the nonempty subset "I" of a Z-algebra X which is defined in definition 5
as a Z-closed set. And if 0 € I, where "1" is Z-closed set then we call "I a Z-subalgebra of X.

It's clear that every Z-subalgebra of X is a Z-closed set of X, but the converse need not be true in
general.

Example 5. Let we have a set X = {0,1,2,3}, a constant 0 and a binary operation * with the
Cayley’s table:

* 1o [1]2]3

010 [1]2]3

101210

2 10 [2 |2 o0

3 1o [o Jo [3
(25)

Then, (X,*,0) is a Z-algebra. I = {1,2} is a Z-closed set of X, but not a Z-subalgebra of X, since
0€&l.

Theorem 5. The intersection of a family of Z-subalgebra in a Z-algebra X is a Z-subalgebra in X.
Proof: Let I}, k € K is a Z-subalgebra of Z-algebra X. If x,y € Nkl then x,y € I, for all kin

K,sox * y € I (since I is a Z-subalgebra for all k in K), so x * y € Nyexlk
In the same way, we proof that the intersection of a family of Z-closed sets in a Z-algebra X is a Z-
closed set in X.

Remark 1. let both I, J are Z-subalgebras of X, and let K is Z-closed set of X.then/ UJ &K U ] are
not necessary be Z-subalgebras in X. as the following example.

Example 6. Let we have aset X = {0,a, b, c,d}, a constant O and a binary operation * with the
Cayley’s table:
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oo o *
o|lo|lojojo|o
WOl ||| (o
ol ool
olo|»|oo|o
Oe|0|wm oo

(26)
Then, (X,*,0) is a Z-algebra, and it is clear that both I = {0,b}and ] = {0, d} are Z-subalgebras
inX.butl v J = {0,b,d}isnot Z-subalgebrain X,sinceb * d =c ¢ I U ]J.
Anditisclearthat K = {a,b}is Z-closed setin X,but K U J = {0, a, b, d}is not Z-subalgebra in
X,sinceb *d =c¢K U ]J.
The condition that makes the union of a Z-closed set and a Z- subalgebra be a Z-subalgebra in X,
when X is edge Z-algebra, and the following theorem showing that.

Theorem 6. Let | be a Z-closed set and let J be a Z-subalgebra in edge Z-algebra X, then I U Jisa
Z-subalgebra in X.
Proof: 0 € J,then0O € U J.

Letx,y €l U J.
If
x,yEI=>x*xy €l
>x*xy €IV ] (27)
If

X,VE |=>x*xy €]
Then we have (27).
If
x€l,ye ]=>xx*y €{0,y}

Because X is an edge Z-algebra. hence x x y € J, now we get (27).

By the same way we proof thatif x € ] & y € I, then we get (27).

We can proof by the same way that the union of two Z-subalgebras in edge Z-algebra X is a Z-
subalgebra in X.

Remark 2. Let X be a Z-algebra, then I = {0, x} is Z-subalgebra for all x in X.
Proof: 0 € I,x+x 0 =0€ 1 (by (Z;)),and 0 * x = x € I (by (Z,)).

Definition 7. If (X,*,0) is a Z- algebra and | a Z-subalgebra in X. we call "I" an edge Z-subalgebra
in X, ifforany xinl, I *x = {0,x}.

Example 7. Let we have a set X = {0,1,2,3}, a constant 0 and a binary operation * with the
Cayley’s table:

* o1 ]2 (3

010 [1]2]3

1]0[1 ]2 |2

2 [0 ]2 ]2 (3

310 [2 ]33
(28)

Then, (X,*,0) is a Z-algebra. We can easily see that both I = {0,1} and J = {0,1,2} are Z-
subalgebras. We notice that "I" is an edge Z-subalgebra but J is non-edge Z-subalgebra since 2 *
1 =2¢{0,1}.
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It is clear that every edge Z-subalgebra in Z-algebra X is Z-subalgebra, but the converse need not
be true in general.

4. Conclusions:

To investigate the structure of an algebraic system, it is clear that edge Z-algebras plays an important
role, and we developed this concept and studied some of its properties. And we found some
equivalent conditions to edge Z-algebra, which are important in studying edge Z-algebra. And we
studied the structure of Z-subalgeba which has an importance in studying the properties of Z-
algebra.
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