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Abstract 

Salinity is one of the main abiotic stresses that causes a serious damage to agricultural production. This study aimed to 

investigate and evaluate the impact of increasing salt stress levels on seeds germination of bean species (Phaseolus 

vulgaris L.) This research is based on biochemical and physiological measurements. To select salt-tolerant genotypes 

and propose a biological alternative, the effect of different concentrations of  NaCl (50, 100, 150 and 200 mM) and an 

exogenous application of GA3 on the seeds were evaluated. Generally, GA3 is a  hormone that improves plant growth. 

The negative effect of salt stress induced by NaCl was observed on the percentage of imbibition, the radicles length. 

under this stress, an increase in soluble sugar amount was recorded compared to the control (0  mM). Indeed, the high 

value of soluble sugars was recorded by Cocorose variety. In this study, the α-amylases activity after 72 hours seems 

sensitive to salinity. Consequently, 0.759 mg of maltose are obtained by Coco rose genotype, While, Djadida genotype 

registred 0.516 mg. At 72 hours, this activity seems lower, Coco rose genotype showed 0.136mg in 0mM. The 

application of GA3 (10-5 mM) exerted a notable effect on the increase in the activity of α-amylases. 

The results proposed that GA3 can be used as an alternative to improve the physiological and biochemical response of 

plants under abiotic stress. 
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1. INTRODUCTION 

Salinity is one of the most important abiotic stresses that negatively affect plant growth and development around the 

world. It affects about 20% of the world's irrigated land and results in the loss of 1.5 million hectares of agricultural land 

each year (FAO, 2015 ; Hiz et al. 2014; Afridi et al, 2019). Saline areas continue to increase in size because of 

mishandled irrigation. 

In addition, in arid and semi-arid regions the salinization process occurs because of high evaporation and inadequate 

amounts of precipitation for considerable leaching (Liang et al. 2018). According to George, (2012), the soil is 

considered saline when the conductivity of the soil saturation extract (ECe) exceeds 4 dS m-1 (> 40 mM NaCl). 

Physiological dehydration and ionic imbalance present the salinity effect form (Bohnert et al. 1995; Nagy and Galiba, 

1995). Na+ and Cl- ions are osmolytes that are biologically aggressive. Due to their small atomic diameter and high 

charge, these two ions lower the soil's water potential and accumulate in plant tissues, leading to water stress, soil 

toxicity and finally an antagonism in the mineral nutrition of the plant (Zhu et al. 2001; Nagy and Galiba, 1995; Bohnert 

et al., 1995, Munns; James ; L¨auchli, 2006). 

The effects of salinity on plant rely upon on its intensity, the duration of its persistence and the stage of plant 

development during which it occurs. Therefore, the study of salt tolerance during different growth phases is essential to 

detect salt limits (Zapata et al. 2004). 

Salinity inhibits crop growth and development, through complex traits that include osmotic stress, ion toxicity, mineral 

deficits, and physiological and biochemical defects. Higher salinity negatively affects nutrient balance, carbon 

metabolism, plant development, photosynthesis (Khan et al. 2015; Singh and Thakar 2018; Amjad et al. 2020). Indeed, 

it causes damage to cell membranes and reduces antioxidant activity and osmotic regulation (Hahm et al. 2017; Liang et 

al. 2014; Farouk and Al-Amri, 2019). 

The seed germination phase represents a crucial stage of development that determines the  successful completion of the 

subsequent phases of the plant's morphogenesis (Wolny et al. 2018). Although most plant species are salt-sensitive at all 

stages of their lifecycle, their sensitivity differs among growth stages, with seed germination being viewed as the most 
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critical stage when salt stress impairs water absorption during seed imbibition and turgescence. The productivity of the 

species is greatly impacted by any modification of seed germination potential caused by negative environmental actions. 

During germination, the resumption of cellular activity is conditioned by a strong enzymatic activity especially the 

amylases, involved in the remobilization of carbohydrate reserves which are the main sources of energy synthesis in the 

amylaceous seeds (Nandi; Das; Sen-Mandi, 1995; Sulpice et al. 2009; Yue et al. 2019). α-amylase is regarded as an 

important enzyme in seed germination (Lovegrove et al. 2000). 

In particular, salt stress is interlinked with lipid peroxidation in cellular membranes, DNA damage, protein denaturation, 

carbohydrate oxidation, pigment breakdown and impairment of enzymatic activity, as well as metabolic adaptations, 

mainly involving the accumulation of osmolytes. GA are endogenous plant hormones that are essential and potent 

regulators of plant growth and development, including promotion of seed germination, stem elongation, regulation of 

bolting, flowering and fruiting (Shan et al. 2014; Yan et al. 2017). Furthermore, pre-treatment with phytohormones such 

as GAs could improve seed performance under various environmental conditions (Rady et al. 2019; Ren et al. 2020). 

Previous researchs have shown that AG and ethylene weaken the seed coat, break seed dormancy and stimulate seed 

germination (Xiao et al. 2018; Zhang et al. 2014). 

This study aimed to estimate of the enzymatic activity involved in the remobilization of carbohydrate reserves and to 

evaluate the exogenous effect of gibberellic acid (GA3) on this activity in two varieties of beans under saline conditions. 

 

2. MATERIEL AND METHODS 

The used plant material is composed of two bean genotypes seeds (Phaseolus vulgaris L.), Coco rose and Djadida. The 

experiments was carried out in the plant improvement laboratory of Ibn khaldoun University in Tiaret (Algeria) and the 

IUT of biological engineering of the Paul Sabatier University of Toulouse (France). 

The saline solutions of the germination medium are prepared from distilled water and NaCl with four increased 

concentrations 0mM, 50mM, 100mM and 200mM. Firstly, the seeds are disinfected with sodium hypochlorite (4%) for 

5 min, then rinsed thoroughly with distilled water. Each germination test is conducted in four replicates of 10 seeds each 

at 25°C (LAMBERT et al., 2014). In fact, a seed is considered germinated when the radicle pierces the seed coat. 

 

Imbibition rate and radicle length 

Seed weight is performed every four hour until 72 hours, when seed radicle length was measured after 7 days of 

germination with a sliding caliper. 

 

Soluble sucres 

The simple sugars (glucose, fructose, and sucrose) are extracted by a solvent responsible for their solubilisation and 

capable of ihibiting the enzymatic activities that can degrade them (Gomez, Rubio, Lescourret, 2003). The reaction 

principle is based on the condensation of neutral monosaccharide degradation products with sulfuric acid. 

100mg of seed cotyledons is maintaining at 5.25  ml of 80% ethanol for 20 hours. Then, 2 ml of the reaction mixture are 

diluted 10 times with 80% ethanol (reagent A). 4 ml of reagent, prepared 4 hours in advance, composed of 2 g of pure 

anthrone added to 1L of sulfuric acid (reagent B) are added to reagent A. The medium is delicately mixed and held in 

the melting ice. After shaking, the tubes are placed in a water bath at 92°C for 8 min and then are cooled for 30 min in 

the dark. The prepared medium  was measured spectrophotometrically at 585 nm (mg.g-1 of DM). 

 

3. Estimation of the enzyme complex 

The extraction of the enzymatic complex is carried out after 72 hours of seed germination. α-amylase activity was 

measured at 570 nm according to the method of LI et al. (2019). The same principle of assaying the enzymatic activity is 

carried out by adding gibberellic acid to the germination medium at concentrations of 10-5 mM. 

 

Determination of osmotic potential 

The osmotic potential of the germination media solutions (10µl), as well as the germinated seeds, is determined at 

different times of the experiment. The operation is carried out using a VAPOR WESCOR type micro-osmometer. 

 

Statistical analysis 

The obtained results were statistically processed by analysis of variance at a safety threshold of 5% using SPSS 

software. 

 

4. RESULTS 

The process of imbibing germinated seeds 

The obtained results (Tab. 04) indicated that the variations in the quantity of absorbed water are strongly influenced by 

the nature of the tested genotypes. The exception is noted after 4h and 20h of germination. This parameter is affected by 

the effect of saline solutions after 24h of germination. Indeed, after 72 hours, it is shown the maximum water absorption 

(0.621 g) by the seeds in the control (0 mM) compared to the other saline treatments (Fig. 1). In contrast, in 200 mM, 

the lowest level of hydration is registred by the seeds with an amount of absorbed water evaluated at 0.488g (Djadida) 

and 0.491g (Coco rose). The tested genotypes showed distinct behaviors with regard to the imposed salt stress. Thus, the 

obtained average results (Fig.) showed a predominance of water absorption by Coco rose compared to Djadida. 
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Figure 1: Quantities of water absorbed by the seeds of the two bean genotypes Djadida and Coco rose subjected to 

different salinity concentrations. 

 

Radicle length 

The average results (Fig2, A), showed a significant variations in the length across the different saline treatments. 

However, it is in the control that the length values are the highest. Indeed, in this treatement (0mM), Coco rose genotype 

is characterised by the highest value (19.6080 mm), while Djadida genotype recorded a value of 16.2560 mm. 

According to the obtained results, it is shown that the intensification of the NaCl content in the germination medium is 

accompanied proportionally by a reduction in the elongation of the length of the root. Therefore, the relative reductions 

in 50 and 100meq, are of the order of 3.67 and 33.85% for Coco rose genotype and 19.57 and 28.13% for Djadida 

genotype respectively. However, under severe conditions (150 and 200 mM), no growth of the radicle was observed. 

Consequently, the recorded values for the two studied genotypes are zero. 

 

Soluble sugars content 

The obtained results (Fig.2, B) showed that an evolution of the soluble sucre values is highlighed by all the genotypes 

according to the increase in the salinity of the germination solutions. Djadida genotype recorded 6.55 mg g-1 DM 

(0mM) and 9.75 mg g-1 DM (200mM) of soluble sugars content. Also, Treatment with 50 mM, 100 mM and 150 mM 

saline solutions exteriorizes respective sugar contents of 7.32 mg g-1 DM, 7.93 mg g-1 MS and 8.67 mg g-1 DM. 

However, for Coco rose genotype, the values are higher under high salinity. They are 8.065, 8.82, 9.065 and 9.555mg g-

1 DM in 50 mM, 100mM, 150mM and 200mM respectively. 

 

α-amylases activity of germinated seeds 

During seed germination, α-amylase mainly hydrolyzes starch into soluble sugar. Figure 2 (C) showed that the saline 

solutions of 50, 100, 150 and 200 mM NaCl led to a significant decrease in α-amylase activity. Nevertheless, this 

decrease was higher for Coco rose than Djadida genotype. For that, in Djadida genotype, starch degradation decreased 

significantly by 15.38%, 16.66%, 25.64% and 35.89% in 0 mM compared to 50, 100, 150 and 200 mM of NaCl 

respectively. 
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α-amylase activity after exogenous application of GA3 

The obtained results from the activity of α-amylase with exogenous supply of gibberellins at a concentration of 10-5 mM 

showed that GA3 attenuated the decrease in α-amylase activity in both studied genotypes (Fig 2, D). These results 

suggest that the decrease in α-amylase activity plays a role in suppressing seed germination. For Djadida genotype, the 

quantities of remobilized starch are of values of 0.078 mg (0 mM), 0.066 mg (50mM), 0.058 mg (100 mM), 0.054mg 

(150 mM) and 0.050 mg (200mM). While, They are of the order of 0.145mg (0 mM), 0.084mg (50mM), 0.071mg (100 

mM), 0.063mg (150 mM) and 0.057mg (200 mM) for Coco rose genotype. 

The exogenous application of GA3 caused significant increases in α-amylase activities compared to the control in the 

Coco rose genotype and which are of the order of 40.43%, 41.38, 41.14 and 62.20% recorded in 50, 100, 150 and 200 

mM NaCl respectively. While, the variation oscillates between 15% (50Mm) and 35% (200mM) for Djadida genotype. 

 
Figure 2: Effect of salt stress on hypocotyl length (A), soluble sugars (B),  amylase activity without exogenous 

application of GA3 (C) and amylase activity with exogenous application of GA3 (D). 

 

5. DISCUSSION 

Seed germination is one of the most fundamental and vital phases of the plant growth cycle, as it determines plant 

establishment and productivity. It is also the most sensitive stage to environmental factors during the plant growth 

process (Weitbrech et al. 2011). Salt stress is one of the main abiotic stress that reduces the germination potential 

including the germinal index and biochemical and enzymatic processes (Gao et al. 2019; Yu et al. 2016; Castanares et 

al. 2018; Zeng et al. 2018). The seed imbibition is a physiological step, essential for the seeds germination of plant 

(Johansson et al. 2000). The rehydration constitutes the mechanism where the cellular water potential becomes favorable 

to a metabolic reactivation of the cells of the seed and essentially those of the primary meristems of the growing points 

of the embryo. Imbibition inevitably depends on the water quantity and quality. The obtained results showed that the 

osmotic potential of the seeds germinated is maintained at a lower level throughout the imbibition period. The osmotic 

potentials of the adopted solutions in this study are of the order of -514 kpa, -652 kpa, -802 kpa, -964 kpa and -1115 kpa 

for 0, 50, 100, 150 and 200 mM of NaCl respectively. The results of the present study corroborate with the previous 

reports indicating that salt stress decreases water uptake during seed germination (Shine et al. 2012; Thomas et al. 

2013). Jeanette et al. (2002) indicated that the Phaseolus species presents a large variability of tolerance to salinity 

during the germination. Indeed, at concentrations of 0, 60, 120 and 180 mM of NaCl, the seed imbibition process 

unfolded in a optimal way. These results indicated that under saline conditions, a collection of 28 bean genotypes 

exhibited sufficient rehydration to allow cell reactivation and germination initiation. 

The last stage of germination is marked by the proliferation and growth of the cells engendering the development of the 

radicle of the embryo (Schiefelbein et al. 1997). Changes in growth and biomass are important indicators of salt toxicity 

in plants (Manaa et al. 2014; Mimouni et al. 2016). The results of our study showed a dramatic decline in radicle length 

under NaCl stress. The salinity effect on germination is significant during multiplication and growth of cells of the 

meristems, cauline and roots of the embryo. Thus, the remobilization of carbohydrate reserves is insufficient to allow 
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vegetative growth through the development of the radicle. It has been revealed by this study that 150 and 200 mM of 

NaCl concentration inhibit the radicle growth. This indicates that the effect of salinity, by toxicity and lowering of the 

osmotic potential is expressed at later stages of germination. According to the obtained results, these effects are mainly 

explained by a physiological water deficit, caused by the low of the osmotic potential of the germination medium. 

Growth inhibition induced by salinity was positively correlated with high accumulation of Na+, accompanied with high 

Na+/K+ ratio at the root. salt stress decreases root plasma membrane permeability which induces accumulation of 

intracellular Na+ content by substituting K+ and other plant tissue nutrients (Assaha et al., 2017). Ion toxicity, in turn, 

limits water and mineral nutrient uptake, thereby limiting seed growth and development, which is supported by previous 

studies (Hamayun et al. 2015; Nedjimi and Daoud , 2009; Tiwari et al. 2010). Multiplication and cell growth processus 

inevitably require sufficient water availability in quantity and quality (Pessarakli, 1991; Taiz et al. 2003). The 

remobilization of carbohydrate reserves is an essential physiological step in the germination process of starchy seeds 

(Heldt, 2005; Soriano et al. 2014; Zhao et al. 2018). Soluble sugars hydrolyzed from starch in the endosperm are 

transported into the embryo to provide energy for its development and facilitate seed germination (Kaneko et al. 2002; 

Kaur et al. 1998). The biogenesis of these sugars results from a catalytic activity of the polysaccharides accumulated 

during the seed maturation. The improvement in the activity of antioxidant defense systems is produced under the 

salinity effect on the seed amylases activity responsible for the accumulation of soluble sugars (Boyer, 1982; Bray et al. 

2000; Yildirim et al. 2009; Elham et al. 2014; Ren et al. 2020). Increase in consumption of energy presents one of the 

strategies adopted to tolerate salt stress (Liu et al. 2018; Acosta-Motos et al. 2020). 

In this study, the obtained results indicated that the mobilization of carbohydrate reserves in the form of soluble sugars 

is stimulated by the increase in NaCl levels in the germination medium. Thus, the increase in the soluble sugars could be 

explained by the early installation of osmotic adjustment mechanisms (Pattangul and Thitisaksakul, 2008; Khalil et al. 

2017). These preliminary results indicated that the manifestation of salinity tolerance mechanisms by osmotic 

adjustment can be expressed at different stages of plant development (Greenway and Munns 1980; Maury et al. 2000; 

Nounjan et al. 2018). 

The species Phaseolus vulgaris presents an intra-specific genetic variability of tolerance to salinity during the first 

phases of plant development. Thus the two tested genotypes during showed different behaviors against salt constraint. 

Generally, abiotic stress and plant hormones affect α-amylase activity (Appleford and Lenton, 1997; Kaneko et al. 2002; 

Li et al. 2019; Li et al. 2019; Liu et al. 2018). In fact, the osmotic potential of the seeds cells and that of the germination 

medium have a significant influence on this activity. The synthesis of α-amylases is initiated in the aleurone cell layer 

where the inducible environment is conditioned by endogenous gibberellins in germinating seeds (Zou et al. 2008). This 

process is variable depending on different plant species, different tissues and environmental conditions (Laura et al. 

1997; Kommineni et al. 1995; Masao Ishimoto et al. 1996). 

This study highlighted that the salinity exerts a very depressive effect on the germination of bean seeds. Results 

confirmed by Zeid (2004) and Kaymakanova (2009). This inhibition is mainly due to an imbalance of water uptake, 

destruction of the cell membrane and reduction of enzymatic activity, which limits the hydrolysis of seeds (Guo et al. 

2004; Ke et al. 2002; Qi et al. 2007; Deivanai et al. 2011). Also, this abiotic stress could inhibit seed germination 

through inhibition of key enzymes, α- and β-amylase, which hydrolyze stored starch during germination (Hua-Long et 

al. 2014; Arnao and Hernandez-Ruiz, 2018). 

Salinity has a notable effect on the availability and functioning of gibberellins during germination. This is confirmed by 

the variations in the α-amylases activity by exogenous application of this phytohormone. Biosynthesis and catabolism of 

phytohormones play essentiel roles in seed germination, seed dormancy and seedling growth (Hamayun et al. 2015; 

Ahanger et al. 2018). Salt stress increases the concentration of ABA and reduces GA in germinating seeds, decreasing 

consequently the GA/ABA ratio which is a key factor for seed germination (Shuai et al., 2017). However, exogenous 

application of GA3 has significantly affected the endogenous GA3, ABA and IAA content (Zhang et al. 2016). Under 

the effect of abiotic stresses, the inhibition of seed germination is mainly due to the reduction of the concentrations of 

bioactive GA (Chen et al. 2018; He et al. 2019; Liu et al. 2019; Wang et al. (2019). Kaneko et al. (2002) and Miransari 

et al. (2014) demonstrated that during seed germination, bioactive GA increase the biosynthesis of hydrolases in the 

aleurone layer. These Hydrolases are responsible for converting starches into monosaccharides and disaccharides, which 

provide substrates and energy for seed germination. 

According to our results, the exogenous application of GA was effective for mitigating the effect of NaCl salinity on the 

germination of several other halophytes, such as Zygophyllum simplex., Arthrocnemum indicum L., and Prosopis 

juliflora (Khan et al. 2002, EL-KEBLAWY, Al-Ansari et al. 2005). Herein, it was strongly correlated with the increase 

of antioxidant enzyme activities (Maggio et al. 2010). This could be explained by the fact that GA can reduce the level 

of ABA in seeds by activating their catabolism enzymes or by blocking the biosynthetic pathway (Toyomasu et al. 

1994). Any increase in the activity of these enzymes can result in early and vigorous germination and optimal crop 

establishment (Berhanu and Melkamu, 2018). Li (2015) suggested that under salt stress conditions, bioactive GA is a 

limiting factor during Suaeda salsa seed germination. 

Salt stress can concomitantly decrease the content of compounds that stimulate seed germination such as enzymes and 

growth hormones (e.g., gibberellins), increase ABA levels, and induce changes in membrane permeability. Exogenous 

supply of GA3 could be a useful approach to improve the response of Phaseolus vulgaris L. at early stages of  to high 

salinity. 
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6. CONCLUSIONS 

The results of our study showed that salt stress greatly inhibits the germination of bean seeds mainly due to ion toxicity, 

oxidative damage and hormonal imbalance. Growth hormones are commonly used in agriculture to improve 

productivity. Gibberellic acid (GA) is one of the plant hormones involved in the mechanism of growth and development 

of vegetative organs. Indeed, it has effects on seed germination, leaf expansion, stem elongation and flowering. 

Additionally, gibberellins interact with other hormones to regulate different metabolic processes in plants. This study 

provided valuable information on seed pretreatment with growth hormone (GA3). Therefore, GA3 application reduced 

the negative effects of salinity produced by NaCl. It leads to higher activity of α-amylases, which promoted seed 

germination. Treated bean seeds with GA3 showed greater starch degradation under salt stress than those untreated. 

Finally, treatment with regulating hormones can be used as an effective strategy for seed germination and seedling 

establishment under abiotic stress. 
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