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Abstract 

Changes in the environmental temperature mediate oxidative stress state that affects the 

survival rate of fishes. In general, stressors could affect directly as fish death or 

indirectly through inhibiting immunity thus allowing pathogen invasion and disease 

incidence. Rapid temperature fluctuations cause severe physiological stress on fish so 

any temperature change affects the immune system. Fishes elicit generalized 

physiological and immunological stress response against heat stress. As in other 

vertebrates, this generalized stress response comprises physiological responses that are 

common to a wide range of environmental, physical and biological stressors. This mini 

review provides insight into the effect of heat stress on the fishes and the immune 

response against heat stress.  
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Introduction 

The aquatic ecosystem mainly depends 

on water quality, as the number and 

diversity of biota is affected by the 

physicochemical parameters of water. 

Measuring physiological parameters of 

fish could evaluate the stress caused by 

elevated temperature (Diaz et al., 2007; 

Vanlandeghem et al., 2010). Fish are 

ectothermic which means that external 

temperature could affect their immune 

system directly; also bony fish have a 

complete vertebrate immune system 

resembling the mammalian immune 

system. These reasons suggest that fish 

is the ideal example used to study the 

effect of temperature on their immune 

system.  

 

Heat stress (HS) and its effect on fishes 

Stress occurs when any environmental 

change (physical or physiological) 

could alter the normal animal 

homeostasis (Bly et al., 1997). In 

general, stressors could affect directly 

as fish death or indirectly through 

inhibiting immunity thus allowing 

pathogen invasion and disease 

incidence (Zelikoff et al., 1991). Rapid 

temperature fluctuations cause severe 

physiological stress on fish (Crawshaw, 

1979) so any temperature change 

affects the immune system badly 

(Lillehaug et al., 1993). 

Water temperature is considered one of 

the most important environmental 

factors which affect animal survival and 

growth aquaculture farming. In the 

teleost fish, any change in the culture 

water temperature could affect the fish 

survival, physiological conditions and 

immune responses (Bowden, 2008; Lee 

et al., 2014). The need to study fish 

reaction to sublethal temperature 

becomes an urge due to world climatic 

changes and heat stress (HS) (Hari et 

al., 2006). Many factors effect on water 

temperature fluctuation such as daily 

changes of air temperature, water body 

size, flow rate volume, degree of 

mixing and solar radiation exposure. 

Ambient temperature fluctuations could 

effect on the animal physiological state 

causing animal stress and resulting in 

the “general adaptation syndrome” 

(Selye, 1950; Iwama et al., 2004). It 

was found that,  the sea surface 

temperature  has risen 0.8  (Godbold 

and Calosi, 2013) leading to a 

disruption in species abundance and 

distribution and affecting the 

community and ecosystem (Vinagre et 

al., 2009; Peck et al., 2012; Madeira et 

al., 2016). Animals usually respond to 

high temperatures through many 

behaviors such as: feeding, shoaling, 

body color, breath function (operculum 

movements), swimming activity 

(equilibrium and swimming speed) and 

escaping (Ohlberger et al., 2007; 

Lopez-Olmeda and Sanchez-Vazquez, 

2011). These behaviors are difficult to 

notice in marine animals leading to 

poor understanding of a species 

response to ocean warming (Healy and 

Schulte, 2012; Cardoso et al., 2015).  

 

 

HS mediates oxidative stress and 

generation of reactive oxygen species 

(ROS) 
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In normal conditions, ROS production 

and elimination are well managed in 

regular cell metabolism. Although this 

balance between ROS production and 

antioxidant defense system is disturbed 

due to environmental stress leading to 

ROS overproduction which has toxic 

effects on cells (Achard-Joris et al., 

2006; Qiu et al., 2011). In normal 

conditions, ROS plays many important 

roles in cellular metabolism such as: 

cell growth, apoptosis and signaling 

(Luo et al., 2014). Normal cellular 

defense systems such as enzymatic 

defense system and naturally 

antioxidant system counteract the 

negative effects of oxidative stress and 

balance the intracellular redox status. 

These antioxidant enzymes are 

considered to be the first intracellular 

defense against ROS and regulate 

redox-dependent signaling, which are 

essential for the innate immunity 

(Selvaraj et al., 2012). 

HS could induce ROS overproduction 

leading to damage of cellular 

biomolecules such as proteins, lipids 

and DNA, which eventually cause 

impaired cellular functions (Liu et al., 

2014; Luo et al., 2015).  

  

HS induces apoptosis 

Extensive oxidative stress leads to 

disruption of cell signaling, severe 

DNA damage and cellular apoptosis 

(Chandra et al., 2000). Apoptosis 

(programmed cell death) could be 

defined as a regular physiological 

process that is involved in the 

development, cellular homeostasis and 

immune responses. Apoptosis could be 

triggered through two major 

mechanisms: the first is the extrinsic 

pathway (death receptor pathway) 

which is induced by binding of tumor 

necrosis factor (TNF) family receptors 

(Gao et al., 2013). The second pathway 

is the intrinsic apoptotic pathway 

(mitochondrial pathway) which 

involves cell death signals cascade 

initiated from mitochondria (Luzio et 

al., 2013). Apoptosis plays an important 

role in the immune system as it is 

involved in enhancing the phagocytic 

removal of dying or infected cells (Gao 

et al., 2013; Luo et al., 2017), 

preventing autoimmune disorder (Chen 

et al., 2006) also inhibiting pro-

inflammatory cytokines (Savill, 1997).  

 

Immune system of fishes 

Fish possess a complex immune system 

of innate and acquired immune defense 

mechanisms. The innate immune 

system which is considered to be the 

first line of defense for fish is sensitive 

to environmental changes that lead to 

disruption of immune function 

(Fevolden and Roed, 1993).  

     One of the essential components of 

fish immune system is the complement 

system. It plays an important role in the 

immune defense against the bacterial 

invasion and the inflammation. C3 is 

the key modulator of both classical and 

lectin pathways involved in various 

immune effector functions (Holland and 

Lambris, 2002). C3 mRNA expression 

level was found to increase due to 

environmental stressors (Qi et al., 

2011). The complement system 

activation is a good indicator of fish 
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immuno-competence under stressors 

(Carroll, 2004). It was suggested that 

HS could activate the complement 

system (Cheng et al., 2018). 

 

Effect of HS on the immune system of 

fishes 

High temperature that is within the 

physiological range of the fish species 

could affect the immune function (Bly 

and Clem, 1992). For example, 

exposure of Catfish (Heteropneustes 

fossilis) to high temperature leads to 

mitochondrial superoxide (O2) 

production in the gills (Prakash et al., 

1998) and induced antibody activity in 

Atlantic cod, Gadus morhua L. 

(Magnadottir et al., 1999). Exposure of 

Atlantic halibut to high water 

temperature had no effect on 

phagocytosis, but inhibited the immune 

response against bacteria (Avtalion, 

1981). 

     In teleost, blood cell plays a major 

role in immune defense so measuring 

the parameters of these blood cells 

could determine the physiological 

changes induced by stressors (Wu et al., 

2015). It was demonstrated that 

elevated temperature fluctuation lead to 

reduction in blood cell count in teleost 

(Qi et al., 2013; Cheng et al., 2017). 

Ellis (1981) found that, white blood cell 

count could be used to evaluate some 

diseases and injuries in fish body; such 

as rearing environment affecting the 

number of circulating leukocytes. It was 

found that there was increase in the 

white blood cell count in rainbow trout 

(Oncorhynchus mykiss) (Houston et al., 

1996) and carp (Engelsma et al., 2003) 

at elevated temperature and after cold 

shock, respectively. Ndong et al. (2007) 

found that, when Mozambique tilapias 

(O. mossambicus) were transferred 

from 27°C to 19°C or 35°C, white 

blood cell counts decreased 

significantly. The phenomenon of 

strong disease resistances in tilapia at 

optimal temperature could be explained 

by (Qiang et al, 2013). It was found 

that, under temperature stress of 19°C 

and 35°C from 27°C, tilapia decreased 

its resistance against S. iniae. WBC 

counts of sea bass Dicentrarchus labrax 

and tench were significantly elevated at 

suitable water temperature in summer 

than in winter (Pascoli et al., 2011).   

 

Immune response of fishes against HS 

Heat shock proteins (HSPs) are a group 

of highly conserved proteins which 

exist widely in all living organisms. 

HSPs families play a critical role in 

protein folding, intracellular transport, 

protein degradation, and cell signaling 

(Geething and Sambrook, 1992), which 

are responsible for the maintenance of 

cellular viability by preventing the 

irreversible loss of vital proteins and 

facilitating their subsequent 

regeneration due to stresses (Pörtner, 

2002). It is also believed that HSPs act 

as biomarkers for assessing the 

organism's response to environmental 

stressors (Dalvi et al., 2017). Among 

HSP family, HSP70 and HSP90 play a 

major role in folding newly synthesized 

proteins and refolding denatured 

proteins, also they participate in the 

stress immune response (Fu et al., 

2011). HS on fish cause over-
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expression of HSP70 and HSP90, 

leading cells to recover from stress and 

protect them from further insults (Wu et 

al., 2012). Overexpression of inducible 

HSP70 could be due to elevated protein 

damage and increased stress tolerance 

(Feder and Hofmann, 1999). HSPs were 

found to be heat inducible in many 

species, such as zebrafish (Danio rerio) 

(Lele et al., 1997), medaka (Oryzias 

latipes) (Werner et al., 2003), and sea 

urchins (Wu et al., 2012). It was 

noticed that elevated levels of HSP70 

and HSP90 lasted only for some hours, 

may be due to energy consumption for 

other heat shock responses (Somero, 

2002) and the available last energy was 

limited.  

Fish could adapt to the elevated water 

temperature of its habitat till a specific 

limit, although HS occurs when the 

temperature exceeds the threshold 

extent. The temperature at which stress 

occurs to fish depends on a fish‟s 

acclimation or previous experience. 

Additionally, there is a sub-stressful 

temperature at which stress occur 

regardless fish acclimation (Barton, 

2002). 

     After the elevation of environmental 

temperature, the water oxygen 

concentration decreases and the 

metabolic rate increases thus inducing 

tissue oxygen demand. Fish adapt to 

fluctuation in environmental 

temperature and hypoxia by inducing 

their total hemoglobin content (Brix et 

al., 2004). As a result to the elevated 

metabolic rate due to HS (Campbell et 

al., 2008; Otto and Zahn, 2008); fish 

increase their fat consumption due to 

increased energy demand, and finally 

lead to reduced body mass. As fishes 

are poikilothermic aquatic animals, 

elevated water temperature could 

change their body temperature. This 

ectothermic character could affect the 

innate and adaptive immunity, leading 

to increase susceptibility to infection or 

death (Dittmar et al., 2013). Generally, 

fish could modulate their metabolism to 

overcome the effects of temperature 

fluctuations (Ibarz et al., 2010). Aquatic 

ectotherms usually increase the 

anaerobic component so as to control 

the damage caused by different 

stressors (Devi, 1996). 
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