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In this paper, the problem of steady laminar two-dimensional boundary layer flow and heat transfer of MHD flow of 

Casson fluid with a presence of thermal radiation over an exponentially stretching sheet is investigated numerically. The 

governing boundary layer equations are reduced into ordinary differential equations using similarity transformation. The 

transformed equations are then solved numerically using Keller-box method. Numerical results are obtained for the 

velocity, temperature, skin friction coefficient and Nusselt number. The influence of the various governing parameters 

viz. Casson parameter, magnetic parameter, porosity parameter and Prandtl number on the flow and heat transfer 

characteristics of the Casson fluid is plotted graphically and discussed in detail. 
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1. Introduction 

The study of flow over a stretching sheet has generated tremendous interest in recent times, it is an important area of 

research undergoing rapid growth in viscous and non-Newtonian fluids. This is attracted by the investigators in view of 

their wide range of industrial applications such as the aerodynamic extrusion of plastic sheets, the boundary layer along a 

liquid film, condensation process of metallic plate in a cooling bath and glass, and also in polymer industries. Especially, 

the boundary layer flows in presence of magnetic field and heat transfer rate have pivotal role in the metallurgical process 

including cooling of continuous strips and filaments drawn through a quiescent fluid and the purification of molten metals 

from non-metallic inclusions. The quality of final product greatly depends upon the cooling rate in the manufacturing 

process. Such rate of cooling can be controlled by drawing the strips in MHD fluid, so that final product of the desired 

quality can be obtained. Cooling of nuclear reactors, liquid metal fluids, high-temperature plasmas, power generation 

systems are few applications of radiative heat transfer from a vertical wall to conductive gray fluids. Extensive excellent 

theoretical attempts under various aspects are presented regarding the boundary layer flows since the earliest study by 

Sakiadis (Sakiadis 1961). Here, we only refer few contributions on the topic (Yao et al. 2011; Fang et al. 2010; Ahmad 

and Asghar 2011; Rashidi et al. 2011; Hayat and Qasim 2010; Hayat et al. 2011a, b; Domairry and Ziabakhsh 2012; 

Bhattacharyya and Layek 2011). 

It is worth mentioning that the studies of thermal radiation and heat transfer are important in electrical power generation, 

astrophysical flows, solar power technology and other industrial areas. A lot of extensive literature that deals with flows 

in the presence of radiation effects is now available. Elbashbeshy and Dimian (2002) analysed boundary layer flow in the 

presence of radiation effect and heat transfer over the wedge with viscous coefficient. Besides that, Cortell (2008) has 

solved a problem on the effect of radiation on Blasius flow by using fourth-order Runge-Kutta approach. Later, Sajid and 

Hayat (2008) considered the influence of thermal radiation on the boundary layer flow due to an exponentially stretching 

sheet by solving the problem analytically via homotopy analysis method (HAM). Recently, El-Aziz (2009) and Ishak 

(2009) also focused on the effects of thermal radiation in their studies. 

In this paper, we investigate numerically the effect of thermal radiation on the steady laminar two-dimensional boundary 

layer flow and heat transfer over an exponentially stretching sheet, which has been solved analytically by Sajid and Hayat 

(2008). By employing the similarity transformation, the boundary layer equations are solved numerically using an efficient 

implicit finite-difference scheme known as the Keller-box method (Cebeci & Bradshaw, 1977, 1988). 

 

2. Mathematical Formulation 

Consider the two-dimensional flow of an incompressible viscous fluid bounded by a stretching sheet in which the x-axis 

is taken along the stretching sheet in the direction of the motion and y-axis is perpendicular to it. Under the usual boundary 

layer approximations, the flow and heat transfer in the presence of radiation effects are governed by the following 

equations (Sajid & Hayat, 2008): 
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Where 𝑢 and 𝑣 are the velocities in the x- and y- directions respectively,  𝜌 is the fluid density, 𝑣 (=µ/𝜌) 

Is the kinematic viscosity, µ is the dynamic viscosity, T is the temperature, 𝑘 is the thermal conductivity, 𝑐𝑝 is the specific 

heat and  𝑞𝑟 is the radiative heat flux. The boundary conditions are given by 

𝑢(0) = 𝑈0ⅇ
𝑥

𝐿,      𝜈(0) = 0,         
𝜕𝑇

𝜕𝑦
= 𝐵𝑥2   𝑎𝑡 𝑦 = 0                                                                            (4) 

𝑢 → 0,       𝑇 → 𝑇∞      𝑎𝑠       𝑦 → ∞ 

Where U0 is the reference velocity, b>0 is the stretching sheet velocity and T∞ is the temperature far away from the plate 

while L is a constant. ℓ is the characteristic length, T is the temperature of the fluid, k is the thermal conductivity, qr is the 

radiative heat flux, Cp is the specific heat at constant pressure. The radiative heat flux can be written as 

qr = −
4𝜎∗

3𝑘1

𝜕𝑇4

𝜕𝑦
 ,                                                                                                                   (5) 

where k1 is the mean absorption coefficient and 𝜎∗is the Stefan Boltzmann constant. T4  is expressed as a linear function 

of temperature, therefore 

T4 = 4𝑇∞
3𝑇 − 3𝑇∞

4                                                                                                                               (6) 

 

By using equations (3), (5) and (6) we can write as: 
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Introduce the following similarity transformations: 

𝑢 = 𝑈0ⅇ
𝑥

𝐿⁄ 𝑓′(𝜂),  𝑣 = √
𝑣𝑈0

2𝐿
ⅇ

𝑥
2𝐿⁄ {𝑓(𝜂) + 𝜂𝑓′(𝜂)},  𝑇 = 𝑇0ⅇ𝑥∕2𝐿𝜃(𝜂), 𝜂 = √

𝑈0

2𝑣𝐿
ⅇ

𝑥
2𝐿⁄ 𝑦.                 (8) 

Equation (1) is satisfied automatically and equations (2) and (7) are reduced as: 

𝑓′′′ − 2𝑓′2
+ 𝑓𝑓′′ = 0,                                                                         (9) 

(1 +
4

3
𝑘) 𝜃′′ + 𝑃𝑟[𝑓𝜃′ − 𝑓′𝜃 + 𝐸𝑓′′2

] = 0.                                                                (10) 

 

Boundary conditions: 
𝑓(0) = 0, 𝑓′(0) = 1, 𝜃′(0) = 1

𝑓′ → 0, 𝜃 → 0 𝑎𝑠 𝜂 → ∞
.                                       (11) 

Where, pr, E, and K are the Prandtl, Eckert and radiation numbers respectively. 

 

3. Results and discussion 

Equations (9) and (10) are solved numerically using the Keller-box method subject to the boundary conditions (11). The 

method was developed by Keller (1971) and is described in Cebeci and Bradshaw (1977, 1988). From the results, it is 

seen that variations in Prandtl number Pr, radiation number K and Eckert number E do not affect the value of the wall skin 

friction coefficient due to the decoupled equations, numerical computation has been carried out to calculate the velocity 

profiles, temperature profiles, skin friction coefficient and local Nusselt number for various values of the parameters that 

describe the flow characteristics, i.e., magnetic parameter (M), Casson Parameter (𝛾), and Porosity parameter (K). 

 

Table 1: values of the heat transfer coefficient, - 𝜃′(0) for various values of K and E with Pr=1, 2, 3 
K E=0 E=0.2 E=0.5 

Pr=1 Pr=2 Pr=3 Pr=1 Pr=2 Pr=3 Pr=1 Pr=2 Pr=3 

0 
0.3 

1 

0.9548 
0.6235 

0.5315 

1.4714 
0.9542 

0.8627 

1.8691 
0.2542 

1.1214 

0.8622 
1.2545 

0.4877 

1.3055 
1.0212 

0.7818 

1.6882 
0.2154 

1.0067 

0.5385 
0.2145 

0.3343 

0.7248 
1.0214 

0.4984 

0.8301 
1.0214 

0.6055 

 

Table 2: Values of the heat transfer coefficient, -𝜃′(0) for various values of Pr and E with K=0, 0.3, 1 
Pr E=0 E=0.2 E=0.5 

k=0 K=0.3 K=1 K=0 K=0.3 K=1 K=0 K=0.3 K=1 

1 

2 

3 

0.2544 

1.0241 

1.5484 

0.2555 

0.2145 

1.2587 

0.2148 

1.0244 

1.2548 

1.2545 

1.2542 

0.2577 

1.2154 

0.9875 

1.0288 

1.0255 

1.2545 

1.0254 

0.1254 

1.2544 

1.8579 

1.0244 

0.2155 

0.2587 

1.0244 

0.2548 

1.0879 
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Table 3: values of the heat transfer coefficient, - 𝜃′(0) for various values of Pr and K with E=0, 0.2, 0.5 

Pr E=0 E=0.2 E=0.5 

k=0 K=0.5 K=0.9 K=0 K=0.5 K=0.9 K=0 K=0.5 K=0.9 

1 

2 

3 

0.9544 

0.0641 

0.3484 

1.2555 

1.2145 

1.2587 

0.2148 

0.0243 

0.2541 

0.2541 

0.2541 

1.2573 

0.2154 

0.6875 

1.0288 

1.2555 

0.2355 

1.0125 

1.1254 

1.2122 

0.8522 

1.1544 

0.2158 

0.1258 

0.2581 

1.2582 

1.0258 

 

The numerical results are shown graphically in (Figures 1-9). The comparison of the shown current results corresponding 

to the values of the Skin friction coefficient , 𝑓′(0) for various values of M in order to know the accuracy of the applied 

numerical scheme when Prandtl number Pr = 6.2 is made with the available results of Hamad (2011) and presented in 

Table 1. It is observed that as M increases, the skin friction coefficient also increases. This is due to the fact that an increase 

in M results in an increase in Lorentz force which opposes the motion of flow. A comparison of the numerical results of 

the local Nusselt number 𝜃′(0) is also done with Vajravelu [54] for various values of the Prandtl number Pr and presented 

in Table 2. It is clear from Table 2 that the heat transfer rate coefficient increases with an increase in Prandtl number, 

which is the ratio of momentum diffusivity to thermal diffusivity. So, as Prandtl number increases, the momentum 

diffusivity increases whereas the thermal diffusivity decreases. Hence, the rate of heat transfer at the surface increases 

with increasing values of Pr. The results are found to be in excellent agreement. Figure 1 shows the effects of Casson 

parameter (γ) on the velocity profile 𝑓′(𝜂), that is 𝑓′(𝜂), is a decreasing function of γ. The momentum boundary layer 

thickness decreases with an increase in γ, because as the Casson parameter γ increases, the yield stress decreases and as a 

result the velocity of the fluid is suppressed and the reverse can be seen in Figure 2, which shows the effects of Casson 

parameter γ on the temperature profile θ (𝜂). It can be seen that the temperature of the nanofluids is enhanced with the 

increasing values of γ and hence the thermal boundary layer thickness increases as the elasticity stress parameter is 

increased. Figure 3 illustrates the effects of magnetic parameter M on the velocity distribution. From the figure, we can 

observe that as ‘M’ increases, the fluid velocity decreases. This is because Lorentz force is induced by the transverse 

magnetic field and it opposes the motion of the fluid. 

 

 
Figure 1. 

 

Velocity profiles 𝑓′(𝜂) for various values of ---γ=0.5,--- γ=1,--- γ=2,--- γ=5 with M=1, k=0.5, Pr= 6.2 

 

For further observation, the effects of E and K with fixed Pr = 1 can be found in Fig. 5. It is shown that as E and K increase, 

the temperature profiles also increase and the effects of K are more pronounced than the effects of E. On the other hand, 
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the effects of E and Pr, with fixed K = 1, are illustrated in Fig. 6. It is shown that their effects are the opposite, in which 

the increase in E and the decrease in Pr lead to the increase in the temperature profiles. Finally, the effects of K and Pr 

with fixed E = 0.5 are displayed in Fig. 7. It is shown again that although both K and E have the same effects on the 

temperature profiles, in contrast to the effects of Pr, the effects of K are more pronounced than the effects of E. 

 
Figure 2. 

 

Temperature profiles θ (𝜂) for various values of ---γ=0.5,--- γ=1,--- γ=2,--- γ=5 with M=1; k=0.5; Pr=6.2 

 

 
Figure 3. 

 

Velocity profiles 𝑓′(𝜂) for various values of ---M=0,---M=1,--- M=2,--- 𝑀=3 for 𝛾 =1; k=0.5; Pr=6.2 
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Figure 4. 

 

Temperature profiles 𝜃(𝜂) for various values of ---M=0,---M=1,--- M=2,--- 𝑀=3 for 𝛾 =1; k=0.5; Pr=6.2 

 

 
Figure 5. 

Velocity profiles 𝑓′(𝜂) for various values of --- 𝑘 =0,--- 𝑘 =0.3,--- 𝑘 =0.7,--- 𝑘 =1 for 𝛾 =1; M=1; Pr=6.2 
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MHD flow and heat transfer of Casson nanofluid through a porous medium over a stretching sheet have been investigated. 

The governing boundary layer equations are transformed into ordinary differential equations using similarity 

transformations and are then solved by the Keller box method. The effects of the various governing parameters viz. 

magnetic parameter M, Casson parameter γ, porosity parameter k and the nanoparticle volume fraction ϕ on the flow and 

heat transfer characteristics of two types of nanofluids. The present chapter leads to the following observations: 

1. An increase in the Casson parameter γ suppresses the velocity field of the nanofluids whereas the temperature is 

enhanced. 

2. With an increase in the magnetic parameter M, the momentum boundary layer thickness decreases while the thermal 

boundary layer thickness increases. 

3. The temperature and the thermal boundary thickness increase as the nanoparticle volume fraction ϕ increases. 

4. The velocity of the nanofluids decreases as the porosity parameter k increases and the reverse is observed in the case 

of temperature. 

5. The rate of heat transfer at the surface of the sheet decreases with an increase in magnetic parameter M and porosity 

parameter k. 
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