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Abstract

In this research, the phenomena that follow the models for dealing with numerical data, which take the form of time
series, have been dealt with, the time series that take the numerical form often suffer from the problem of zero
inflation, which represents a problem that cannot be overlooked, so a set of methods and methods have been
proposed to deal with this problem, and one of the most important models in this case is Poisson's zero-inflated
model. It should be noted here that there are a set of methods that are used for the purpose of estimating the
parameters of the Poisson zero-amplified model, including the MLE method and the NLM method. In this paper, a
genetic algorithm method was proposed for the purpose of improving the above estimates. The simulation and real
data were used for the purpose of verifying the performance of the proposed method, where the research relied on
the MSE standard for the purpose of comparison, which proved that the proposed method gave good results

compared to other methods.
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Introduction:

Poisson distribution its a default starting
point to modeling count data, its p.m.f. is
provided as follows (For example, data that
accepts only positive integer values).

_ exp(— g p”

¥

as is well-known, (g = ©] this distribution is
said to be "equi-dispersed” because both its
mean and variance are greater than zero. The
Poisson distribution is less beneficial when
the data is "over-dispersed,” or when the
variance of them is greater than the mean of
them. The well-known Negative Binomial
(NB 1) distribution results from letting the
variation be described by a gamma
distribution in turn. The latter can detect data
overdispersion.

It’s Naturally would do the same thing here
and includes covariates in model by
assigning covariates to the dependent

Pr(Y = y]
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variable's (conditional) mean in linear
regression as a function of parameters and
covariates.

b= exp(x'B)

where it is demonstrated using the
exponential function that (b = 0}, as is
clearly necessary. Maximum likelihood can
then be used to estimate the parameters.,
This is straightforward because the log-
likelihood function is concave (So is the NB
Il model). The following discussion will be
successful if it is understood that the Poisson
model and conventional variations that allow
for over-dispersion cannot describe multi-
modal data.. (More accurately if 1 is integer,
then the modes of the Poisson distribution
are i and {p - 173, but never at values that
are not contiguous. If p is non-integer, the
single mode takes place at [1].) A variation
of the well-known The Poisson regression
model, which permits a surplus of zero
counts in the data, zero-inflated Poisson
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(ZIP) regression model. This phenomena
frequently occurs in real-world situations.
For this model, typical references include
Heilbron (1989),  Additionally, excellent
conversations are offered by Winkelmann
(2000) and Cameron & Trivedi (1998).

The fact that the data comes from two
regimes is the key concept. While counts in
one regime (RI) always result in zero, counts
in the other regime (RII) proceed according
to a regular Poisson process.

Suppose

(Mullahy, 1986) (Greene, 2003, p.
750).

According to Lambert (1992), it is
customary and practical, to modeled
& utilizing the Logit model, so:

w; = [exp(z,V)]/[1+ exp(z,'v)]
Where z;' is (1xp) the vector of i®®
observing a few covariates, and ¥ is a
(px1) added parameter vector. Of
course, the elements of z; may contain
components of x;, in addition to the
possibility of replacing the Logit

Prly; ER;] = e i Prly, ERg] = (1 —wy); 1= lefnitioH with a Probit (or other)

when
Pr[l‘r’f =0]= th; + (1— f-'-'f:' EXP':_.”':':'

And

I (1— e )exp(—p )y
Pr[}’f =r]= 1
As previously, the conditional mean
serves as the model's entry point for
covariates, gt; , of Poisson distribution
#; = exp(x;P)
where x; is {1xk) vector of if™
observation on the covariates, and f is
a (& ~17) vector of coefficients.
Clearly
Elvlx]=(1— e p,
And
Var[[ylx] = (1 — o) (g + opf)
and as a result, this structure also
allows for excessive data dispersion.
(if @;=0). When the Poisson model is
applied to the Negative Binomial
model, the over-dispersion does not
result from heterogeneity. Rather, it
results from the data's division into the
two regimes. In actuality, one or both
of these factors could contribute to the
prevalence of over-dispersion.
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specification.

If we has n It is clear from the
sample's independent observations
that the log-likelihood function can

REL

showed as

oai(1)= ) belye) + e -e(x )]

¥i=t

Y bl eols -l - ) bl -l
%0 i=0
(Cameron & Trivedi,1998,p.126.)

We must consider the various ranges

of summing while coding the
aforementioned log-likelihood
function for usage in R (or any other
program that needs just one
observation on the log-density before
adding all n, assuming that the
observations are independent). The
log-third likelihood's term doesn't

need to be changed because the range

of summation includes all n. We can

create a dummy variable to cope using

the summation ranges for the first two

terms, that, 2;,if it takes the value one

v; =0, and else zero. The i
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Following that, the observation on the
log-likelihood It will be encoded as

gl ()= D, ez 4 -yl )
(1D -exnln ) - oy )| e+ ez

Time series:

time series is collection of random
variables over an extended period of
time. The measurements are typically
taken at regular intervals. Numerous
uses of time series analysis include
forecasting of the economy, sales, the
stock market, sports, and many more.

Fitting a model that describes the time
series' structure and offers practical
interpretations is the fundamental goal
of time series modeling. An
application for a fitted model is:

« To draw attention to the essential
elements of the time series, such
as change-points, seasonality, and
trend

 To clarify the relationship
between present and  pasts
occurrences so that future values
of the series can be predicted.

The data aren't always independent,
which is one way time series analysis
differs from regression analysis. Let
(¥, ¥%,,-,%,) be a time series with n
elements, denoted as X,J™, The
mean composition of
X .5, isp, = E[X,]. The structure
of covariance of {X.17-; can be
showed by its autocovariance
function (ACVF). ACVF with h lag
at time can be written as:
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Folht + h) = Cov(X, ¥, ) = BX, ¥ — BCLE(F )

the time series {X, } if it meets the
following requirements:

a) the mean E(,) its same for each t
b) for all t and every
k € {0,1,2,---}the covariance between
X.and X, is same. Similarly, It is
argued that a time series {X,} is
strictly stationary if (XX, ...X,) &
(0 %o g 002 4y, for all integers,
the joint distribution is the same
h =0 and n=0. Clearly, Weakly
stationary is implied by rigidly
stationary.

In the case of a (weakly) stationary
series {X.}, In this setting, The lag h
ACVF is independent of t for some of
h

v (tt+h) =1y (0h)

For ease of notation, all ACVFs can
utilize the same argument:
¥ () = v, (0,h).

Sometimes it is simpler to examine
correlations than covariances. A
stationary time series' autocorrelation
function (ACF) {X.} is defined as

y(h)

hl=Corr( X, X = —=

plh) ( £ r+h:| ¥(0]

The  Cauchy-Schwarz  inequality

clearly shows that ACFs are between -
1 and 1. The impact of series
dispersion is eliminated in ACFs.
ACFs can be used to compare how
dependent various series are.

For series, it’s advantageous to pursue
a partial autocorrelation function
(PACF). In general, a conditional
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correlation is a partial correlation. The
conditional  correlation  between
X, &8 X, h = 0 is what is used to
(PACF) for a time series between
X, and X, ,,, conditional on

Xr+h -1

K(h) = Corr( X, X

Kewws Xeqar o,

t—thr+1J'"

after linear prediction for all variables
between X, and X,,,, where the
conditional  correlation is taken
between X, and X, ;.

The most popular model class in
stationary time series analysis is an
autoregressive  moving  average
(ARMA) model class. The general
(ARMA) model introduced by (Peter
Whittle in the 1970). The most current
observation in a series is linked to
older observations and incorrect
forecasts using the ARMA model
class. the ARMA(p,q) model contains
moving-average terms up to order q as
well as autoregressive terms up to
order p. It abides by recursion.

L=0%  + @5, +

where p and g non-negative integers.
White noises make up the series (z,.)
which is frequently thought to have an
independent, uniform distribution in
time t. the ARMA(p,q) model is also
known as a moving-average model
(MA(q)) where p =0, Likewise,
when ¢ = 0, This model is known as
an autoregressive model of order p

(AR(p)).
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We can use model (ARIMA)
Autoregressive  integrated moving
average to illustrate patterns in non-
stationary  series. The  model's
components, which consist of d
difference  operation, g moving
average terms and p autoregressive
terms, are defined in the form ARIMA
(p, d, q). greater formality, operation
{x.}if (1-—B)%x, is ARMA(p,q),
when(p,d,q) are positive integers is
called to be ARIMA (p,dq) |,
(1 — B)% is the dw operator for order
differences.

The models that belong to the
generalized linear family, they
negative binomial (NB) regression
model and poisson regression model,
etc...

The Poisson Regression Model:
Poisson  distribution  models  the
probability of y, its formula:

Pri¥y =y|u) =

Keep in mind that there is only one
parameter used to define the Poisson
dIStrébU'[IOI‘I This |s a rare event's average

i

incidende® rate p”er “funit  of exposure.
parameter g it can be explained as the risk of
a new incident of the event during a given
exposure period, t. The probability of y
events is given by the relation:

e ¥ (pt)”
Pri¥ =ylpt) = ————

!
The likelihood that the mean, variance and
Poisson distribution's are equal is.
Regular multiple regression is similar to
Poisson regression, but the dependant
variable () in Poisson regression is a count

(v=0,1,2,..

)

(¥y=10,1,2,..

)
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that is observed and follows Poisson
distribution. Thus, the possible values of (¥
are positive integers: (0, 1, 2,3,ect.). It’s
believed that high numbers are uncommon.
In light of the fact that logistic regression
also involves a discrete response variable,
Poisson regression is comparable to it.
However, unlike in logistic regression, the
answer is not constrained to particular
values. The investigation of the relationships
between the colony counts of bacteria and
various environmental factors and dilutions
is one example of an appropriate application
of Poisson regression. Another illustration is
the quantity of machine breakdowns under
various operating circumstances. Another
illustration would be crucial data on cancer
incidence or newborn mortality in certain
demographic groups.

In Poisson regression, we assume that of
collection of k regressor variables (X's)
determine the Poisson incidence ratio. A
formula of this quantity is:

p=rtexp(fi Xy + F X+ + B X

The regression coefficients 4. f%..... 5, a
parameters who are unknown and are
estimate using the set of data. Their
estimates is labeled &y, &5, .., b, that
notation is used For an observation, the basic
Poisson regression model is expressed as

e TR gt
PT’(Y:' = ¥ |# tfj = 1
¥
Where
M=t H(X:.l'?j

=t; exp(ffi Xy + FoKo + o+ B Xy

In other words, the result follows the Poisson
distribution for a particular set of the
regressor variables' values.
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The poisson model has number of issues, It
includes Zero-inflation result of model
estimate.

Zero-inflated models:

The model class of zero-inflated models

(Mullahy 1986; Lambert 1992) is another
one that can handle excessive zero counts
(Cameron & Trivedi 1998, 2005.). These
models consist of two components: a point
mass at zero and the count distribution like
the geometric, (NB) or Poisson distribution.
Due to this, two sources for zeros are there:
the count component and the point mass. The
unobserved state was modeled by using a
binary model (zero vs. count): in the simplest
example, it merely has an intercept but could
also have regressors.
Formally, the point of the mass at zero and
the zero-inflated density is combined. i (3)
and the count distribution £, ....(% 2 ¥).
Probability inflates the likelihood of seeing a
zero count.# = f....(0;z, v):

fzsromﬂ(yj XE) ﬁl }’) = fxs?’o(oi Z, }f) I{I}}I:y) u (1 - Jﬂrsro(oi L, }’)jl -fmm(}fi k9 1@)

when Iy is the indicator function and the
unobserved probability m of belonging for
the point mass component are modelled by a
binomial  Generalized linear  model
m=g"Yz'¥) . The corresponding
regression equation to the mean given by:

He = 70 + (1 —m). exp(x] F)

utilizing the link in the canonical log. The
zero-inflation model's vector of regressors
z:and the regressors in the count component
x; Wants not to distinction the simple case,
z; = 1 is only an intercept. The hypothetical
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link function g(7) in binomial GLMs are the
logit link, but other links like the probit is
also available. The full set of parameters
off#, ¥, and Dispersion potential parameter £
(if we used (NB) count model) we can
estimate by Maximum likelihood. Inference
is usually performed to f# &y, when @ is
treated as a nuisance parameter even if a
(NB) model is use.

hurdle models:

Several experimental count data sets
show Excessive dispersion and more zero
observations than the Poisson model would
predict. The hurdle model, first put forth by
Mullahy (1986) in the econometric literature,
is one model class capable of capturing both
characteristics (Cameron & Trivedi 1998,
2005,). A censored count distribution or a
binomial model can be used for the latter.
The hurdle model combine count data model
more formally.f, ... (¥ x, ) (that was left
truncated in ¥ = 1) and zero hurdle model
Foarol ¥ 2, ¥) (right-censored in ¥ = 1)

zaro 0z,
fhu?’rﬂs[}ri x,ZJﬁJ}r) — {f |: Z Y:I

A model of the parameters %, ¥, and likely to
be two or one additional scattering parameter
0 (whether fi..o o7 foome Or both of them
(NB) densities) were estimate by MLE ,
when a benefit of likelihood definition is the
ability to maximize the count and hurdle
components independently. According to,
there is a matching mean regression
relationship.

use the canonical log URL once again The
most logical specification for using zero
model such a barrier is probably the binomial
GLM 1. If the same regressors are used, a
different insightful interpretation emerges
x; = z, are use the same count model in
both of components f..,. = feonr -

the test of the hypothesis f# = ¥ then tests
whether the hurdle is required or not.

The Maximum
estimator:

We observe data {(x, |1 =i <mn}
The number ¥; is a realization of the random
variable ¥;. Using independence, the total
log-likelihood is given by:

Likelihood (ML)

108 L0 1, 9, \B Ko % = ) log POY = Y AR,
i=1

With, according to:

expl—p, )"
P[Y[ = }’f\.ﬁ:xfj =T
And g, = exp({#x.). Write now long L{{)
is a quick way to express the overall
likelihood.

It then follows. ify=0

(4= a2 Foe 5 UL N0y F250) o)

i=1
Therefore (ML) estimator is of course is
given by:

EML = argpmax log L

Z':}’f — ¥ )x =0
i=1

With #;, = exp(f%x,) the fitted value of ¥, .
As is customary, the anticipated fitted value
has been used as the estimated value of
E[¥|x;]. The vector of the residual is

log(p,) = x{f+ log(1l— f..,.(0:z,¥)) — log(1 erihogarial 10, g vectors of the explicative
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variables, according to this first order
requirement.

The advantage of the maximum likelihood
framework is that the cov formula is readily
available:

=[S )

i=1
Additionally, =~ Wald tests, Lagrange
multiplier tests, and Likelihood Ratio tests
can now be used to do hypothesis tests.

Genetic Algorithm (GA):

Workability (GA) are based in Darwin’s
theory of survival of the fittest. It may
contains a chromosome, a gene of fitness, set
a population, fitness function, selection,
breeding and mutation. chromosome's are set
Solutions (called population) by their they
(GA\) is begin with. . depend on we Solutions
from one population to create a new
population, who is motivated by possibility
that a new population will be best from the
old population. Furthermore, solutions are
select according to their fitness to form new
solutions, that is, offsprings. The above
process is repeated Until some conditions are
met algorithmically, the basic (GA) is
outlined As follows:

Stage A (Start) Create a chromosomal
population at random, or appropriate answers
to the issue.

Stage B (Fitness) Analyze every
chromosome's fitness in the population.
Stage C (New population) Repeat the
subsequent stages until the new population is
finished to create a new population.

1- (Selection) Based on their fitness, Select
two parents chromosomes from the
population. Greater fitness increases the
likelihood of being chosen as a parent.
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2- (Crossover) Cross over the parents in the
event of a crossover probability to create
additional offspring, or children. If there is
no Crossing, the offspring would be a perfect
replica of the parents.

3- (Mutation) Create new children with a
mutation probability at each locus.

4- (Accepting) Add fresh progeny to the
new population.

Stage D (Replace) Use the newly formed
population to run the algorithm again.

Stage E (Test) Stop and return the most
effective solution available to the present
population if the final condition is met.

Stage F (Loop) went to stage B.

The crossover and mutation operators have a
significant impact on the performance of
genetic algorithms. In Fig. 1, the block
diagram for (GA) is displayed.

Encoding Technique in (GA):

The solution to the problem is
transformed into chromosomes using the
problem-specific encoding technique is use
in (GA). Binary encoding, permutation
encoding, value encoding, and tree encoding
are some of the different encoding methods
utilized in (GA).

Selection Techniques in (GA):

Genetic algorithms (GA) rely on an
assessment criterion that provides a Measure
the value of any chromosome in the context
of the task as the basis for their selection
function. In this stage of the genetic
algorithm, certain genomes are selected from
the collection of chromosomes. The three
most popular methods for chromosomal
selection are steady state, rank, and roulette
wheel.
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(GA) Operators:

(GA) can be used to optimize various
parameters in any process control
application. (GA) uses a variety of operators,
including as crossover and mutation, to
properly choose the optimal value. The
encoding methodology and the requirements
of the challenge determine the right
crossover and mutation approach to use. 1-

Crossover ; 2- Mutation

Primary community

Figure no 1. Block Diagram Representation
(GA).

Table 1: MSE for method:

Figure no 1 Displays block diagram of
different phases of performance
improvement (GA).

Simulation study:

To compare the genetic method with
other methods used in the experiment and the
extent of its impact on the data, a simulation
was conducted consisting of four cases with
different sample sizes(50;150; 250), fixed
iteration number to (500), different ratio of
zeros in data with, (0.1; 0.4; 0.6) the lambda
values of the variables ( x=2; y=1) are fixed,
and the values of the estimated parameters
are variable in each case of the simulation, in
the first case there are default values and the
second is estimated values In( mle) method
real data, the third is by (+0.5) the estimated
values, and the fourth is(-0.5)

Case 1: in case f# = (0.2,0.04,0.1)

50 0.2232 0.2255 0.1897
150 01 0.2108 0.2208 0.1849
250 0.1941 0.2205 0.1731
50 0.2101 0.2263 0.1876
150 04 0.1759 0.2214 0.1825
250 0.1089 0.2176 0.1747
50 0.5094 0.2343 0.1785
150 0.6 0.2977 0.2270 0.1745
250 0.2049 0.2254 0.1479
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It is clear from the above table that the
genetic method (GA) was the best compared
to other methods and based on the values of
(MSE) as it is clear that when the data's
fraction of zeros rises, (MSE) is heading
towards a decrease in all methods, but the
genetic method was affected less than the
rest of the methods and at all studied

Table 2: MSE for method:

samples, in addition to that we note that
when the sample size increases, the (MSE)
is directed to The decline in general

Case 2: in case

§ =(0.972,—0.002, —0.228)

50 0.1274 0.0229 0.0433
150 0.1 0.1156 0.0212 0.0351
250 0.0786 0.0196 0.0315
50 0.1433 0.0244 0.0648
150 0.4 0.0879 0.0211 0.0341
250 0.0423 0.0206 0.0321
50 0.1652 0.0267 0.0849
150 0.6 0.1540 0.0250 0.0634
250 0.1255 0.0223 0.0498

It is clear from the above table that the
genetic method (GA) was the best compared
to other methods and based on the values of
(MSE) as it is clear that when the data's
fraction of zeros rises, (MSE) is heading
towards a decrease in all methods, but the

Case 3:incase ff = (1.472,0498,0.274)
Table 3: MSE for method:

genetic method was affected less than the
rest of the methods and at all studied
samples, in addition to that we note that
when the sample size increases, the (MSE)
is directed to The decline in general

50 0.5176 0.2682 0.2075
150 01 0.4662 0.2665 0.2026
. 250 0.3945 0.2601 0.1753

50 0.9486 0.2781 0.1903
150 04 0.5023 0.2748 0.1800
250 0.4724 0.2720 0.1674
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50 0.6104 0.2776 0.1911
150 0.6 0.5408 0.2764 0.1876
250 0.1667 0.2496 0.1599

It is clear from the above table that the
genetic method (GA) was the best compared
to other methods and based on the values of
(MSE) as it is clear that when the data's
fraction of zeros rises, (MSE) is heading
towards a decrease in all methods, but the

Case 4: incase ff = (0.472,—0502, —0.728)

Table 4: MSE for method:

genetic method was affected less than the
rest of the methods and at all studied
samples, in addition to that we note that
when the sample size increases, the (MSE)
is directed to The decline in general

50 0.3841 0.2676 0.2383
150 0.1 0.2734 0.2619 0.2157
250 0.2426 0.2057 0.1934
50 0.2827 0.2100 0.2915
150 0.4 0.2431 0.2040 0.2905
250 0.2363 0.1929 0.2686
50 0.2540 0.2091 0.3741
150 0.6 0.1993 0.2028 0.3300
250 0.1660 0.1979 0.2986

It is clear from the above table that the
genetic method (GA) was the best compared
to other methods and based on the values of
(MSE) as it is clear that when the data's
fraction of zeros rises, (MSE) is heading
towards a decrease in all methods, but the
genetic method was affected less than the
rest of the methods and at all studied
samples, in addition to that we note that
when the sample size increases, the (MSE)
is directed to The decline in general
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Lung Cancer Data:

It’s With every five cases of cancer, there
is one case in males, and out of every nine
cases of cancer in females, there is one case,
Lung cancer ranks second in terms of the
speed of its spread compared to the rest of
the types of cancer. that originates in the
lungs' cellular structure. Many additional
cancers, including breast and kidney
cancers, has the potential to disseminate
(metastasize) to the lungs. There is no
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referral for the cancer to be lung disease
when this occurs. This is so because the
location of the original tumor determines
what type of cancer it is and how it is
treated. It’s divided into two basic types:
Small Cell Lung Cancer and Non-Small Cell
Lung Cancer (NSCLC) for instance, if
breast cancer has spread to the lungs, its be
treated as metastatic breast cancer rather
than lung cancer (SCLC). These varieties
develop and disperse differently. They are
frequently handled differently.

Lung cancer statistics are used to highlight
the performance methodologies. The writers
gathered these statistics from an Iraqi
medical facility in Al-Naasiria City, Iraq.
They reflect the number of lung cancer
patients diagnosed each day in Al- Naasiria
City between January 1 and December 31,
2021. One response variable (lung cancer)
and bacterial water pollutants (T.P.C.) make
up these data. Variable (Y) represents the

Table 6: RMSE for the method.

number of people with lung cancer, and
variable (X) represents bacterial water
pollutants (T.P.C)

Table 5: general statistics.

X 512 21428 41.8512
Y 5.1224 2.1599 42.1658

It is clear from the above table that the value
of the arithmetic mean for the variable X
amounted to 5.12 with a standard deviation
of 2.1428 and a coefficient of variation of
41.8512, and the value of the arithmetic
mean for the variable Y amounted to 5.1224
with a standard deviation of 2.1599 and a
coefficient of variation of 42.1658.

method RMSE bo b1
Mle 0.1838 0.9719 -0.0021
NIm 0.0904 1.7298 -0.0247
GA 0.0584 2.0653 0.0196

The proposed approaches and additional
methods are displayed in the table by
(RMSE). As the findings of the (GA)
technique were the best compared to the
other approaches because it produced the
lowest estimate, we observe that the regular
methods are significantly impacted (RMSE).

1471

b, bo b1 b2
-0.2262 2.6429 0.9979 0.7976
-0.0215 5.6395 0.9756 0.9787
0.0218 7.8880 1.0198 1.0221

Conclusions:

The (GA) was proposed to deal with zero
inflation data, improve estimates and obtain
better estimator. By using simulation and
real data, the results showed that the (GA) is
the best compared to other methods (mle
and nlm) based on the values of (MSE). The
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results proved that water pollution (T.P.C) is
one of the causes of lung cancer.
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